

Lockout/Tagout Procedures

Tues, March 9th 9:00 AM PST - ENGLISH 10:00 AM - SPANISH

Importance of Lockout and Tagout Programs

Employees servicing equipment face severe injuries or even death.

Importance of Lockout and Tagout Programs

There are approximately

3,000 citations

for improper Lockout/Tagout every year.

Lockout/tagout is one of the top 10 most frequently cited standards in the United States.

Overview

- 1. Types of Hazardous Energy
- 2. Energy Control Procedure
- 3. Additional Lockout/Tagout Requirements

Learning Objectives

- Why lockout/tagout programs are necessary
- When a program must be developed
- The procedures and steps the program must contain
- Employer and employee roles and responsibilities
- Program training and audit requirements

Program Requirements

- A program is required if employees service or maintain machines or equipment that can start up unexpectedly or release stored energy.
- The program must:
 - Establish procedures for removing energy supplies and applying lockout/tagout devices.
 - Address stored or potentially accumulated energy, when appropriate.
 - Include training and program review requirements.
- Customize the program to each individual site.

Roles and Responsibilities

Definitions

• Energy-isolating device:

A mechanical device that physically prevents the transmission or release of energy

• Hardware:

A device that connects directly to the energy-isolating device

• Zero energy state:

The point at which all sources of energy are removed

Types of Hazardous Energy

What you need to know:

- Energy Sources that require a Hazard Assessment
 - Electrical
 - Mechanical
 - Chemical
 - Hydraulic
 - Pneumatic
 - Potential

Hazard Assessment

- Identify all the hazardous sources.
- Hazardous energy may include the following:
 - Electrical
 - Mechanical
 - Chemical
 - Hydraulic
 - Pneumatic
- Also consider the following:
 - Stored or potential energy
 - Thermal sources
 - Human factors

Electrical Energy

- This is the most common energy type.
- Sources include the following:
 - Electrical power
 - Static electricity
 - Electrical storage devices
- Results may include the following:
 - Electric shocks
 - Burns
 - Electrocution
 - Explosions

Mechanical Energy

- This energy is created by mechanical movement.
- It may be found in the following:
 - Power transmission apparatuses
 - Fly wheels
 - Belts
 - Pulleys
- Contact with moving parts can crush, fracture, cut, or amputate a body part.

Chemical Energy

- It is the energy produced by chemical reactions.
- It may cause splashes or splatters.
- It often needs to be controlled in pipes and other portions of equipment.
- Other chemical-related dangers include:
 - Gas or heat from chemical reactions.
 - Hazardous chemicals.

Pneumatic Energy

- It is the product of stored pressure from gas or air in pneumatic lines and vessels.
- Pressure must be relieved prior to servicing or maintenance.
- It may be encountered in the following:
 - Pressurized systems
 - Compressors
 - House air
 - Air powered tools
 - Gases

Hydraulic Energy

- This energy is derived from the motion and pressure of liquids.
- It is commonly found in the following:
 - Pistons
 - Hydraulic brakes
 - Piston motors
 - Hydraulic presses

Potential Energy

- It is stored energy that could be hazardous if released.
- Examples include the following:
 - Gravity
 - Springs
 - Thermal energy

Energy Control Procedures

Energy control procedures must outline the following:

- 1. The scope of the procedures
- 2. The purpose of the procedures
- 3. How to shut down equipment
- 4. How to isolate energy sources
- 5. How to secure equipment and machines
- 6. The placement, removal, and transfer of lockout-tagout devices
- 7. Testing procedures of equipment
- 8. Employee roles and responsibilities
- 9. The means to enforce compliance

Overview of Steps

- 1. Prepare for shutdown
- 2. Shutdown
- 3. Isolate energy sources
- 4. Apply locks & tags
- 5. Control residual energy
- 6. Verify energy control methods

Step 1—Prepare for Shutdown

- Notify affected employees of activities.
- Identify shutdown procedures.
- Identify energy sources.
- Identify energy isolation devices.
- Determine quantity and type of lockout/tagout devices required.

Step 2—Shutdown

• Shut equipment down by its normal start/stop method.

Step 3—Isolate Energy Sources

- Use energy-isolating devices appropriate for the energy source, such as:
 - Manually-operated circuit breakers or electrical disconnects for electrical energy.
 - Valves for pneumatic energy.
 - Blocking or bars for mechanical energy.
- All devices must be equipped with a place to attach a hasp or a lock or have a built-in locking mechanism.

Step 4—Apply Locks and Tags

- Locks are attached so that the device cannot be operated until locks are removed.
- Devices must be in the off position.
- Tags indicate that the device and equipment may not be operated.
- Locks, tags, signs, and seals must be securely attached.
- The name of the authorized employee must be included.

Tagout-only Programs

- Some energy-isolating devices may not allow locks.
- Tags are attached where a lockout device would be placed.
- Disadvantages include:
 - No physical protection.
 - A possible false sense of security.

Requirements

Requirements for all devices:

- Durable
- Standard in color, shape, and appearance
- Substantial enough to prevent accidental removal
 - Tags must have a minimum unlocking strength of 50 lbs.
- Labeled with the authorized employee's name

Additional Tag Requirements

- Readable and understandable by all employees
- Contains instructions not to operate or energize equipment
- Single-use
- Self-locking
- Non-releasable
- Applied by hand

Best practice is to use **both** locks and tags.

Group Lockout

- One employee has overall responsibility.
- Each person verifies the lockout.
- They attach personal devices to the group lockout box.
- It must provide the same level of protection.

Step 5—Control Residual Energy

- Release, restrain, or dissipate energy.
- Prevent the reaccumulation of energy.
- Isolate the space:
 - Blind the lines.
 - Disconnect and misalign the lines.
 - Double block the valves and bleed the residual materials.

Step 6—Verify Energy Control Methods

- Assure that switches, valves and other mechanisms cannot be turned on.
- Activate equipment control switches and levers, and depress start buttons to assure the power is isolated.
- Return switches, levers, and buttons to the off position.
- Use a meter to assure that electrical energy is not present.

Start-up Procedures

- Inspect area and remove all tools, rags, and other materials.
- Assure that equipment is operationally intact.
- All guards and other safety devices are replaced, if applicable.
- Notify affected employees that equipment will be restarting.
- Check work area to assure all employees are safely positioned.
- Verify all controls are in the neutral or off position.
- Remove lockout/tagout devices.
- Notify affected employees that lockout/tagout devices have been removed and the equipment or machinery is ready for use.

Additional Requirements

What you need to know:

- 1. Procedures covering multiple shifts
- 2. Training and retraining requirements for various employees
- 3. Procedures for audits and documentation
- 4. Communication requirements for outside contractors

Multiple Shifts

Lockout/tagout that occurs over multiple shifts:

- Protection must extend between shifts.
- Energy isolation devices must remain locked out from the previous shift.
- The incoming shift must verify the energy is isolated and correctly locked out.

Training Affected Employees

Training for affected employees:

- Purpose and use of energy control procedures
- Limitations of a tagout-only program
- How to recognize when a procedure is being used
- Who is authorized to perform work
- That restarting locked or tagged-out equipment is prohibited

Training Authorized Employees

Training for authorized employees:

- Policies and procedures of the energy control program
- Type and magnitude of hazardous energy sources
- The methods and means necessary for energy isolation and control
- Limitations of a tagout-only program

Retraining Requirements

Retraining is required in the following circumstances:

- An employee's job assignment changes.
- Machines, equipment, or processes change.
- The energy control procedure is modified.
- There are inadequacies in an employee's knowledge.
- There are deviations from adherence to the procedures.

Audits

- The audit is conducted:
 - At least annually.
 - If a weakness or issue is noted.
- Audits are performed by authorized employees.
- Audits review the following:
 - Adherence to energy isolation procedures
 - Effectiveness of lockout/tagout procedures
 - Employee training
 - Assigned roles and responsibilities
 - The authorized person's responsibilities

Documentation

Documenting audits:

- Equipment being controlled
- Date of review
- Names of employees involved
- Name of auditor

Contractors

- Inform each other of respective procedures.
- Their procedures must be as effective as yours and in compliance with all codes.
- Inform all affected employees of the contractor's procedures.
- Audit contractors prior to working and periodically to assure their adherence to needed controls.

Ways Barkley Can Help

- Assist you in preparing your Lockout/Tagout Program and Procedures
- Train your staff on these procedures
- Run Audits on the effectiveness of your program

Have Questions?

Type them in the Q&A box at the bottom of your screen

THANK YOU FOR YOUR ATTENDANCE!

Join us next month for our next Workplace Safety Series session: Machine Safeguarding

View more upcoming events at: www.barkleyrisk.com/training

